RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. SECOND SEMESTER EXAMINATION, MAY 2012

FIRST YEAR

MATHEMATICS (General)

: 26/05/2012 : 10.30 am - 1.30 pm Time

Paper: II

Full Marks: 75

[Use Separate Answer Books for each group]

Group - A

UNIT-I

(Answer any three questions)

1.	 a) The equation 3x² + 2xy + 3y² - 18x - 22y + 50 = 0 is transferred to 4x² + 2y² = 1 when referred to rectangular axes through the point (2, 3). Find the inclination of latter axes to the former. b) If the expression ax + by changes to a'x' + b'y' with rotation, prove that a² + b² is an invariant. 	[4] [1]
2.	Reduce the equation $6x^2 - 5xy - 6y^2 + 14x + 5y + 4 = 0$ to canonical form and determine the nature of the conic.	[4+1]
٠.	a) Prove that the pair of straight lines joining the origin to the points of intersection of the parabola $y^2 = 4ax$ by the straight line $y = mx + c$ are at right angles if $c + 4am = 0$.	[4]
	b) Find the nature of the conic $\frac{17}{r} = \sqrt{5} - 2\cos\theta$.	[1]
4.	a) Find the centre of the circle $r = 3\sin\theta + 4\cos\theta$.	[1]
	b) Show that the sum of the reciprocals of two perpendicular focal chords of a conic is constant.	[4]
5.	Show that the pole of any tangent of the hyperbola $xy = c^2$ w.r.t the circle $x^2 + y^2 = a^2$ lies on concentric and similar hyperbola.	[5]
	UNIT-II	
	(Answer any two questions)	
6.	a) Solve the differential equation $(x+y)^2 \frac{dy}{dx} = a^2$.	[3]
	b) When the differential equation $Mdx + Ndy = 0$ is said to be exact. Investigate the exactness of	•?
	the diff. equation $(1+4xy+2y^2)dx + (1+4xy+2x^2)dy = 0$.	[2]
7.	Find the integrating factor of the differential equation $\cos^2 x \frac{dy}{dx} + y = \tan x$ and hence solve it.	[2+3]
8.	Find the general and singular solution of the differential equation $x^2(y - px) = p^2y$, $p = \frac{dy}{dx}$.	[5]
	Cwoun P	
	<u>Group - B</u> UNIT-I	
	(Answer any three questions)	

- a) For what value of c (scalar), the length of the vector $\vec{\alpha} = c(2\hat{i} 6\hat{j} + 3\hat{k})$ is of 5 unit? [2] b) Find the moment about the point B(3, -1, 3) of a force P(4, 2, 1) passing through the point A(5,2,4). [3] [5]
- 10. Prove that the vectors $\vec{a}, \vec{b}, \vec{c}$ are coplanar iff $\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}$ are coplaner.

[5] 11. Show that by vector method the medians of a triangle are concurrent. 12. a) Find the equation of the Plane passing through the point (3, -2, -1) and Parallel to the vectors [2] (1, -2, 4) and (3, 2, -5). b) Find the shortest distance between two lines through A(6, 2, 2) and C(-4, 0, -1) and parallel to [3] the vectors (1, -2, 2) and (3, -2, 2) respectively. 13. If $\vec{a}, \vec{b}, \vec{c}$ be three non-coplaner vectors then show that $[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}] = [\vec{a}\vec{b}\vec{c}]^2$. [5] <u>UNIT-II</u> (Answer any five questions) 14. Prove that every convergent sequence is bounded, but the converge is not true. [3+2]15. a) Determine a, b so that $\lim_{x \to 0} \frac{x(1 + a\cos x) - b\sin x}{x^3} = 1.$ b) Find the maximum value of $x^{1/x}$. [3+2]16. Using Lagrange's method of undetermined multipliers find the stationary point of $V = x^2 + y^2 + z^2$ subject to the condition x + y + z = 6. [4+1]Also determine whether *V* is maximum or minimum at this point. 17. Expand e^x in Maclaurin's infinite series with proper justification. [2] 18. a) State Leibnitz's theorem on alternating series. b) Test the convergence of the series $1 + \frac{3}{2!} + \frac{5}{3!} + \frac{7}{4!} + \cdots$. [3] [5] 19. State and prove Lagrange's Mean Value theorem of a real valued function. [5] 20. Find the rectilinear asymptotes of $(x+y)^2(x+2y+2) = x+9y+2$ 21. Find the envelope of the straight lines $\frac{x}{a} + \frac{y}{b} = 1$ Where a, b are variable parameters, connected by the relation a+b=c, c being a non-zero [5] constant. UNIT-III (Answer any two questions) [5] 22. Evaluate the integral: $\int \frac{2\sin x + 3\cos x}{3\sin x + 4\cos x} dx$ 23. Find the reduction formula for $\int \tan^n x \, dx$ (n is a positive integer greater than 1) and deduce the value of $\int_0^{\pi/4} \tan^6 x \, dx$. [3+2]24. Using the method of integration evaluate $\lim_{n\to\infty} \left[\frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right]$. [5]